Search results

Search for "liquid metal alloy ion source" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources

  • Nico Klingner,
  • Gregor Hlawacek,
  • Paul Mazarov,
  • Wolfgang Pilz,
  • Fabian Meyer and
  • Lothar Bischoff

Beilstein J. Nanotechnol. 2020, 11, 1742–1749, doi:10.3762/bjnano.11.156

Graphical Abstract
  • compared with ion beams such as lithium, beryllium, boron, and silicon, obtained from a mass-separated FIB using a liquid metal alloy ion source (LMAIS) with respect to the imaging and milling resolution, as well as the current stability. Simulations were carried out to investigate whether the
  • resolution of Ne+ from a gas field ion source. The comparison allows one to select the best possible ion species for the specific demands in terms of resolution, beam current, and volume to be drilled. Keywords: focused ion beam; gas field ion source; liquid metal alloy ion source; resolution; Introduction
PDF
Album
Full Research Paper
Published 18 Nov 2020

Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111)

  • D. J. Lockwood,
  • N. L. Rowell,
  • A. Benkouider,
  • A. Ronda,
  • L. Favre and
  • I. Berbezier

Beilstein J. Nanotechnol. 2014, 5, 2498–2504, doi:10.3762/bjnano.5.259

Graphical Abstract
  • having an Orsay Physics mass filtered ion column operated at 30 keV. A liquid metal alloy ion source (LMAIS) of Au4Si ([Si] = 19%, [Au] = 81%) heated at 450 °C was used for the milling step; a Au2+ or Si+ ion beam was selected independently by a Wien filter. The patterns in the Si/SiO2 substrate were
PDF
Album
Full Research Paper
Published 30 Dec 2014
Other Beilstein-Institut Open Science Activities